The hog-badger is not an edentate: systematics and evolution of the genus Arctonyx (Mammalia: Mustelidae)

Zoological Journal of the Linnean Society 154 (2): 353–385.


Hog-badgers (mustelid carnivorans classified in the genus Arctonyx) are distributed throughout East and Southeast Asia, including much of China, the eastern Indian Subcontinent, Indochina and the large continental Asian island of Sumatra. Arctonyx is usually regarded as monotypic, comprising the single species A. collaris F. Cuvier, 1825, but taxonomic boundaries in the genus have never been revised on the basis of sizeable series from throughout this geographical range. Based on a review of most available specimens in world museums, we recognize three distinctive species within the genus, based on craniometric analyses, qualitative craniodental features, external comparisons, and geographical and ecological considerations. Arctonyx albogularis (Blyth, 1853) is a shaggy-coated, medium-sized badger widely distributed in temperate Asia, from Tibet and the Himalayan region to eastern and southern China. Arctonyx collaris F. Cuvier, 1825, is an extremely large, shorter-haired badger, distributed throughout Southeast Asia, from eastern India to Myanmar, Thailand, Vietnam, Cambodia and Laos. The world's largest extant badger, A. collaris co-occurs with A. albogularis in eastern India and probably in southern China, and fossil comparisons indicate that its geographical range may have extended into central China in the middle Pleistocene. The disjunctly distributed species Arctonyx hoevenii (Hubrecht, 1891), originally described within the order ‘Edentata’ by a remarkable misunderstanding, is the smallest and darkest member of the genus and is endemic to the Barisan mountain chain of Sumatra. Apart from A. hoevenii, no other Arctonyx occurs on the Sunda Shelf below peninsular Thailand. The natural history of each species of Arctonyx, so far as is known, is briefly reviewed.


Freigegeben in H
Montag, 23 November 2020 16:34

SMITH, M., BUDD, J. & GROSS, C. (2003)

The Distribution of Blanford's fox (Vulpes cana Blanford, 1877) in the United Arab Emirates.

Journal of Arid Environments 54 (1): 55-60.


Blanford's fox, Vulpes cana, was first recorded in Arabia in 1981 and in the United Arab Emirates (UAE) in 1995. It has since been shown that they are locally abundant in their range in the north-eastern mountains of UAE. Population density, as determined by catch-per-unit-effort (CPUE), was compared for several sampled sites. Predators or the lack thereof may produce the trends observed, as foxes may be an important food source for Arabian leopards. External body measurements, except for body weight, are similar to those previously recorded. Tail tip color is not conclusive in their identification, as individuals with white- and black-tipped tails have been caught.


Freigegeben in S
Freitag, 20 November 2020 13:12


Die Wildkatze.

100 S., 25 s/w-Abb..
Die Neue Brehm-Bücherei 189. 1. Auflage.
A. Ziemsen Verlag, Wittenberg Lutherstadt, 1957.


Der Band ist die erste Monographie  über die Wildkatze in deutscher Sprache. Jahrelange Beobachtungen an Wildkatzen und die Kenntnis der einschlägigen Literatur befähigen den Verfasser, diese Monographie so umfassend wie nur igend möglich zu gestalten. Es wird auf die Formbildung in und außerhalb Mitteleuropas, die Unterarten, fossile Vorkommen, Artgeschichte, Gattungsverwandtschaft und die Stellung der Gattung Felis im System eingegangen. Aussehen und Gestalt sowie Leben und Verhalten werden beschrieben, weitere Kapitel befassen sich mit der Jugendentwicklung, dem Seelenleben, der Beudeutung für den Menschen, Parasiten und den Vergleich von Haus- und Wildkatze.


Freigegeben in H

A revised taxonomy of the Felidae.

The final report of the Cat Classification Task Force of the IUCN/SSC Cat Specialist Group.

Cat News Special Issue 11, 80 pp, mit Farbfotos und Verbreitungskarten. ISSN 1027-2992.


Executive summary:

  1. The current classification of the Felidae was reviewed by a panel of 22 experts divided into core, expert and review groups, which make up the Cat Classification Task Force CCTF of the IUCN Cat Specialist Group.
  2. The principal aim of the CCTF was to produce a consensus on a revised classification of the Felidae for use by the IUCN.
  3. Based on current published research, the CCTF has fully revised the classification of the Felidae at the level of genus, species and subspecies.
  4. A  novel  traffic-light  system  was  developed  to  indicate  certainty  of  each  taxon  based  on  morphological,  molecular,  biogeographical  and  other  evidence.  A  concordance  of  good  evidence  in  the  three  principal  categories was required to strongly support the acceptance of a taxon.
  5. Where disagreements exist among members of the CCTF, these have been highlighted in the accounts for each species. Only further research will be able to answer the potential conflicts in existing data.
  6. A total of 14 genera, 41 species and 77 subspecies is recognised by most members of the CCTF, which is a  considerable  change  from  the  classification  proposed  by  Wozencraft  (2005),  the  last  major  revision  of  the  Felidae.
  7. Future areas of taxonomic research have been highlighted in order to answer current areas of uncertainty.8.  This  classification  of  the  Felidae  will  be  reviewed  every  five  years  unless  a  major  new  piece  of  research  requires a more rapid revision for the conservation benefit of felid species at risk of extinction.


Freigegeben in K

Multi-locus analyses reveal four giraffe species instead of one.

Current Biology 26 (18): 2543-2549.



Traditionally, one giraffe species and up to eleven subspecies have been recognized; however, nine subspecies are commonly accepted. Even after a century of research, the distinctness of each giraffe subspecies remains unclear, and the genetic variation across their distribution range has been incompletely explored. Recent genetic studies on mtDNA have shown reciprocal monophyly of the matrilines among seven of the nine assumed subspecies. Moreover, until now, genetic analyses have not been applied to biparentally inherited sequence data and did not include data from all nine giraffe subspecies. We sampled natural giraffe populations from across their range in Africa, and for the first time individuals from the nominate subspecies, the Nubian giraffe, Giraffa camelopardalis camelopardalis Linnaeus 1758 , were included in a genetic analysis. Coalescence-based multi-locus and population genetic analyses identify at least four separate and monophyletic clades, which should be recognized as four distinct giraffe species under the genetic isolation criterion. Analyses of 190 individuals from maternal and biparental markers support these findings and further suggest subsuming Rothschild’s giraffe into the Nubian giraffe, as well as Thornicroft’s giraffe into the Masai giraffe . A giraffe survey genome produced valuable data from microsatellites, mobile genetic elements, and accurate divergence time estimates. Our findings provide the most inclusive analysis of giraffe relationships to date and show that their genetic complexity has been underestimated, highlighting the need for greater conservation efforts for the world’s tallest mammal.


Freigegeben in F

First insights into past biodiversity of giraffes based on mitochondrial sequences from museum specimens.

European Journal of Taxonomy 703: 1–33. ISSN 2118-9773.


Intensified exploration of sub-Saharan Africa during the 18th and 19th centuries led to many newly described giraffe subspecies. Several populations described at that time are now extinct, which is problematic for a full understanding of giraffe taxonomy. In this study, we provide mitochondrial sequences for 41 giraffes, including 19 museum specimens of high importance to resolve giraffe taxonomy, such as Zarafa from Sennar and two giraffes from Abyssinia (subspecies camelopardalis), three of the first southern individuals collected by Levaillant and Delalande (subspecies capensis), topotypes of the former subspecies congoensis and cottoni, and giraffes from an extinct population in Senegal. Our phylogeographic analysis shows that no representative of the nominate subspecies camelopardalis was included in previous molecular studies, as Zarafa and two other specimens assigned to this taxon are characterized by a divergent haplogroup, that the former subspecies congoensis and cottoni should be treated as synonyms of antiquorum, and that the subspecies angolensis and capensis should be synonymized with giraffa, whereas the subspecies wardi should be rehabilitated. In addition, we found evidence for the existence of a previously unknown subspecies from Senegal (newly described in this study), which is now extinct. Based on these results, we propose a new classification of giraffes recognizing three species and 10 subspecies. According to our molecular dating estimates, the divergence among these taxa has been promoted by Pleistocene climatic changes resulting in either savannah expansion or the development of hydrographical networks (Zambezi, Nile, Lake Chad, Lake Victoria).


Freigegeben in P
Dienstag, 10 November 2020 17:38

POCOCK, R. I. (1939)

The Fauna of British India, including Ceylon and Burma. 

Mammals Vol. 1:Prmates and Carnivora (in part), Families Felidae and Viverridae

Genus Prionailurus Severtzow: pp. 265–284.

Taylor & Francis Ltd. Publishers, London.



Freigegeben in P
Montag, 09 März 2020 23:36

DONNDORFF, J. A. (1792)

Zoologische Beyträge zur XIII. Ausgabe des Linnéischen Natursystems.
Erster Band: Die Säugethiere.

919 Seiten. Verlag der Weidmannschen Buchhandlung Leipzig.



Freigegeben in D
Dienstag, 23 Juli 2019 17:50


Zur Geschichte und Kultur der Schweinezucht und -haltung.
1. Mitteilung: Zur Domestikation und Verbreitung der Hausschweine in der Welt.

Züchtungskunde, 78 (1): 55–68. ISSN 0044-5401


Die Erstdomestikation von Schweinen erfolgte etwa 7800 Jahre v. Chr. wie die von Rind, Schaf und Ziege im Gebiet des sogenannten fruchtbaren Halbmondes (Vorderasien). Nach archäozoologischen Befunden sind heute weitere autochthone Domestikationszentren für Schweine in Südostasien, China (ab dem Ende des 7. Jahrtausends v. Chr.) und Südschweden (2400 Jahre v. Chr.) nachweisbar. Spätere lokale, teilweise zufällige Einkreuzungen von Wildtieren waren nach den gegenwärtigen Befunden nur von geringer Bedeutung für den Hausschweinebestand. Aus dem ursprünglichen Domestikationsgebiet heraus verbreiteten Siedler die Hausschweinehaltung nach Ägypten, Indien und auf die Balkanhalbinsel. Für Mitteleuropa sind Einwanderungswege über das Mittelmeer nach Südeuropa sowie entlang der großen europäischen Flüsse nachgewiesen (ab 5500v. Chr.). Während polynesische Einwanderer schon frühzeitig Hausschweine auf ozeanische Inseln mitbrachten (ab 4500 v. Chr.), sind in Amerika, in großen Teilen Afrikas und in Australien erst mit Beginn der europäischen Kolonisation Schweine gehalten worden.



Freigegeben in F

Genome-Wide Evolutionary Analysis of Natural History and Adaptation in the World’s Tigers.

Current Biology 28 (23). 10.1016/j.cub.2018.09.019.


No other species attracts more international resources, public attention, and protracted controversies over its intraspecific taxonomy than the tiger (Panthera tigris) [1, 2]. Today, fewer than 4,000 free-ranging tigers survive, covering only 7% of their historical range, and debates persist over whether they comprise six, five, or two subspecies [3–6]. The lack of consensus over the number of tiger subspecies has partially hindered the global effort to recover the species from the brink of extinction, as both captive breeding and landscape intervention of wild populations increasingly require an explicit delineation of the conservation management units [7]. The recent coalescence to a late Pleistocene bottleneck (circa 110 kya) [5, 8, 9] poses challenges for detecting tiger subspecific morphological traits, suggesting that elucidating intraspecific evolution in the tiger requires analyses at the genomic scale. Here, we present whole-genome sequencing analyses from 32 voucher specimens that resolve six statistically robust monophyletic clades corresponding to extant subspecies, including the recently recognized Malayan tiger (P. tigris jacksoni). The intersubspecies gene flow is very low, corroborating the recognized phylogeographic units. We identified multiple genomic regions that are candidates for identifying the adaptive divergence of subspecies. The body-size-related gene ADH7 appears to have been strongly selected in the Sumatran tiger, perhaps in association with adaptation to the tropical Sunda Islands. The identified genomic signatures provide a solid basis for recognizing appropriate conservation management units in the tiger and can benefit global conservation strategic planning for this charismatic megafauna icon.


Freigegeben in L
Seite 1 von 16
© Peter Dollinger, Zoo Office Bern hyperworx