Tortoise (Reptilia, Testudinidae) radiations in Southern Africa from the Eocene to the present.

Zoologica Scripta 46(4): 389-400


Africa, inclusive of the West Indian Ocean islands, harbours 11 of the world's 16 extant testudinid genera. Fossil records indicate that testudinids originated in Asia and dispersed first to North America and Europe (Early Eocene) and later to Africa (Late Eocene). We used mitochondrial (1870 bp) and nuclear (1416 bp) DNA sequence data to assess whether molecular data support the late cladogenesis of Southern African testudinid lineages. Our results revealed strong support for the monophyly of a clade consisting of Kinixys, the two Malagasy genera and four Southern African genera (Psammobates, Stigmochelys, Homopus and Chersina). Kinixys diverged from this clade in the Late Palaeocene, suggesting that testudinids occupied Africa at an earlier date than indicated by fossil records. The Southern African tortoises consist of three, strongly supported clades: Psammobates + Stigmochelys; the five-toed Homopus + Chersina; and the four-toed Homopus. Due to the paraphyly of Homopus, we propose the taxonomic resurrection of Chersobius for the five-toed Homopus species (boulengeri, signatus and solus). Cladogenesis at the genus level occurred mainly in the Eocene, with Chersina and Chersobius diverging in the Oligocene. The latter divergence coincided with species-level radiations within Homopus (areolatus and femoralis) and Psammobates (oculifer, geometricus and tentorius). Our phylogeny could not resolve relationships within Psammobates, indicating rapid speciation between the Late Oligocene and Early Miocene. The Chersobius species were the last to diverge in the Early to Mid-Miocene. By the Mid-Miocene, P. tentorius started to differentiate into four lineages instead of the three recognized subspecies: P. t. tentorius, P. t. trimeni and two P. t. verroxii subclades occurring north and south of the Orange River, respectively. Terminal radiations in several taxa suggest the existence of cryptic species and a more diverse tortoise fauna than currently recognized. Factors contributing to this diversity may include the early origin of African testudinids and climatic fluctuations over a heterogeneous landscape.


Gelesen 3560 mal Letzte Änderung am Sonntag, 24 September 2023 14:49
© Peter Dollinger, Zoo Office Bern hyperworx